next up previous
Next: Backwards propagating wave Up: Optical model Previous: Boundary conditions

Forward propagating wave

Rearrange equation, 33 to give,

$\displaystyle E_{1}^{-} = E_{1}^{+}-\frac{n_2}{n_1}(E_{2}^{+}-E_{2}^{-})$ (34)

Inserting in equation 30, gives

$\displaystyle E_{2}^{+}+E_{2}^{-}=E_{1}^{+}+E_{1}^{+}-\frac{n_2}{n_1}(E_{2}^{+}-E_{2}^{-})$ (35)

$\displaystyle 2E_{1}^{+}=E_{2}^{+}+E_{2}^{-}+\frac{n_2}{n_1}(E_{2}^{+}-E_{2}^{-})$ (36)

$\displaystyle 2E_{1}^{+}\frac{n_1}{n_1+n_2}=E_{2}^{+}+E_{2}^{-}\frac{n_1-n_2}{n_1+n_2}$ (37)



rod 2015-01-07